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ON A FORMULATION OF THE BENDING OF
ELASTIC PLATES

R. C. KOELLER

University of Colorado, Boulder, Colorado 80302

Abstract—A theory of the bending of linear elastic plates is developed in terms of an arbitrary set of linearly
independent functions which forms a basis for the thickness parameter. A canonical system of equations is ob-
tained in terms of stress matrix functions from which all kinematic variables, stress resultant and matrix stress
resultants may be obtained. This canonical system of equations uses approximate transverse normal mode shapes
which are obtained by solving an eigenvalue problem for the integrated expansion functions.

1. INTRODUCTION

THERE are several plate theories given in the literature which are formally equivalent to
the linear theory of elasticity. One approach to an exact theory of plates is that given by
Luré [1, 2] in which he develops a solution for the displacement field for the linear theory
of elasticity in terms of the two-dimensional gradient operator and the thickness co-
ordinate. Aksentian and Vorovich [3, 4] and Aksentian [S] apply asymptotic methods to
this theory in order to solve the stress concentration problem of the circular hole in an
infinite plate. Other procedures to obtain a general solution to the equations of linear
elasticity within the spirit of plate theories have been through generalizations of the
methods of series expansion of Cauchy [6] and Poisson [7] and the method of hypothesis
of Kirchhoff [8]. Goodier [9] used an expansion in powers of the thickness of the plate in
order to obtain a general solution in terms of a series of biharmonic functions in the case
when the plate is subjected to edge tractions. He also obtains the Poisson-Kirchhoff
theory when an approximation for the order of the thickness of the plate is carried out.
An exact formulation for plates and cylinder subjected to edge loads was presented by
Green [10] in terms of Fourier series, as well as power series, in terms of the thickness
coordinate. Alblas [11], utilizing the work of Green [10], solved for the stress distribution
in a thick plate containing a smooth circular cavity.

A different approach to the exact theory of plates has been developed by Tiffen and
Lowe [12], where they define moments and higher order moments of stress and displace-
ment with respect to the thickness coordinate. Several methods of approximation are
then suggested in order to reduce the system of equations to a more tractable form. Mindlin
and Medick [13] use a Legendre polynomial expansion in the thickness coordinate, fol-
lowed by an integration across the thickness in the variational equation of motion, in
order to reduce the equations of elasticity into an infinite series of two-dimensional
equations. In a similar manner, Mindlin [14] develops a theory of vibration of crystal
plates using a power series expansion and truncation of this theory, as well as [13], is
performed by introducing correction factors.
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As opposed to the theories which are developed from the three-dimensional theory of
elasticity, the direct theory may be used. In the direct approach the plate or shell is re-
garded as a surface and one postulates a form of the balance laws. For the kinematics of
the direct theory the surface, called a Cosserat surface, is regarded as a set of points and
to each point a deformable vector, called a director, is assigned. For an explanation of
the kinematics of oriented bodies, the development of the theory of shells and plates, as
well as the history of the contributors, see the excellent monograph by Naghdi [15].
Green et al. [16] developed a general theory of a Cosserat surface utilizing fully consistent
dynamical and thermodynamic principles of continuum mechanics. This theory was then
specialized by Green and Naghdi [17] to the theory of an elastic Cosserat plate. A general
nonlinear thermodynamic theory of shells using an infinite number of directors was
developed by Green et al. [18] and Green and Naghdi [19]. They expanded the position
vector of the deformed configuration in terms of a power series in the thickness coordinate
and introduced various weighted averages in order to reduce the energy equation and the
entropy production inequality in terms of surface quantities. The field equations for the
surface were then obtained with the aid of invariance conditions under superposed rigid
body motion.

In the present paper a generalization is made concerning the series expansion, insofar
as the expansion is made in terms of a set of arbitrary functions. This generalization allows
the set of functions to be selected by considerations which occur later in the development.
The representations of [18, 19] are readily deduced except for the entropy inequality, and
since the linear isothermal theory of the bending of elastic plates is being developed it is
more expedient to develop the theory in terms of the linear theory of elasticity. In Section 2
the kinematics of the bending theory of plates are developed in terms of matrix notation,
the equations of motion are given, and the constitutive equations for isotropic materials
which are homogeneous with respect to the thickness coordinate are recorded. These
results are the same as those given in [20], with the exception that the coefficients are
known functions of the expansion functions. The Stokes—Helmholtz decomposition
theorem is then applied in Section 3 in order to obtain a system of equations governing
three stress matrix functions and one scalar function from which all the stress resultants
and kinematical variables are obtained. This system of matrix equations is then canonical-
ized in Section 4. The resulting system of equations may be characterized as follows. One
of the matrix equations is uncoupled from the other three equations and this matrix
equation is diagonalized. The other two matrix equations are diagonalized but are coupled
with the last scalar equation. In addition these equations are shown to be invariant with
respect to the assumed form of the three-dimensional displacement field. The require-
ment that these equations be invariant under the assumed form of the displacement field
is used to select the set of functions used in the series expansion for the three-dimensional
displacement field. Several examples of these functions are then given. In Section 5 several
restrictions are introduced in order to allow some comparisons with the work of Luré
[1,2], and in Section 6 an example is given so that a comparison with the theory of
elasticity may be made.

Some remarks about the general scheme of notation should be given. In general the
notation whenever convenient is that given in [15, 20]; however, there are some changes
in notation that have been made. In this paper italic and greek letters are scalar, bold-face
italic and greek letters are P x 1 matrices and bold-face German letters are P x P matrices.
Tensor indices having the range two are denoted by minuscule greek letters, the elements
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of matrices are denoted by majuscule italic letters and enumerative indices are denoted
by minuscule German letters. The use of matrix notation is only used as a means for con-
densing the equations so that a bold-face letter with a tensor index should be interpreted
as a set of P tensor equations,

2. BASIC EQUATIONS OF THE BENDING THEORY

Points in the plate are denoted by (X, X,, X5} where X, « = 1,2 are the plate co-
ordinates and X4 is the thickness coordinate. The thickness of the plate is denoted by h.
Attention will be restricted to the bending of an elastic medium bounded by two parallel
planes defined by X, = +h/2 where, without loss of generality, the (X, X,) plane co-
incides with the middle plane of the plate. In addition, the elastic medium is bounded by
a closed cylindrical surface. Nondimensional parameters are introduced through a
characteristic parameter ! in the plane {X,, X,). These nondimensional parameters are
defined by

Xp= XJl,  x3=2Xyh  H=h2, 2.1)

so that H is a nondimensional half thickness parameter.

Following the customary and simplifying analysis of an elastic homogeneous isotropic
medium bounded by two parallel planes, the boundary conditions on the planes x; = +1
are considered to be prescribed stresses, and the decomposition into the symmetrical and
asymmetrical loading of the plate is made. The asymmetrical loading problem results in
the bending {flexure) problem in which the three-dimensional displacements u¥ and u%
are odd functions and ¥ is an even function of x,. The symmetrical loading results in the
extensional (stretching “or compression) problem in which the three-dimensional dis-
placements u} and u3 are even functions and u% is an odd function of x;.

Since the bending thebry is being developed and the elastic material is assumed to be
homogeneous and isotropic, a solution to the linear theory of elasticity is sought in which
the shear stress tensor components 1%, and the transverse displacement u¥ arec even
functions of x;, whereas the stress tensor components in the plane of the plate t},, the
normal stress t%; and the displacement components in the plane of the plate u¥ are odd
functions in x5. In the above and what follows, all quantities which depend on the three-
dimensional space variables will be denoted by an asterisk, and all greek indices have the
values of 1 or 2. Boundary conditions on the surfaces x, = 41 are prescribed stresses
which are such that they cause only bending; however, since the theory is lincar, super-
position may be used for the extensional part. Thus, the boundary conditions for the
bending theory are taken as

¥ =1p,, 5 =4p; forx; =1, 22
i: == %g}an % :%{}3 for X3 = -1, o

where p,, p; are the prescribed surface tractions on the planes x5 = +1 and ¥, t¥ are the
components of the stress vector.
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Let §(P) denote the set of all functions defined in a closed interval £ = {x3|—1 < x5
< 1} which may be expanded in a power series of order 2P in x5, i.e. F(P) = { f(x3)| f(x3)
= o+ o0  ayx)}, where P is an arbitrary integer. The set {1, x5, x3}, x3, ... x3"} forms
a basis of the space §(P). Now let Y = {1,%,,n,,...7p, {1, {5,...{p} be another linear
independent basis of the space §(P), where ny(x3), N = 1,2,... P are even functions and
{y(x3), N=1,2,... P are odd functions of the nondimensional thickness coordinate
X3 = 2X,/h. In what follows the set of functions {n,n,,...1np} and {{,,{5,...{p} will
simply be denoted by n and { respectively. Introduction of n and { is made so that they
may be selected in the course of the analysis in such a way as to simplify the resulting
analysis. One important result is that there is a unique choice of these functions for a
given value of P so as to make the resulting equations which govern the deflection of the
plate to be invariant with respect to a change of bases. It is convenient to express x; in
terms of the set { and for P > 1 the identity function has a unique representation in terms
of { which is written as

P

x3 = ), oxlalxs) = 6'¢, (2.3)

N=1

where ¢ denotes the set of constants {6, a,,...0p} and the above superscript T indicates
the transpose.

It is now assumed that the three-dimensional displacement field for the bending of
an elastic medium may be expressed in the form

CTYa = cT(Sa—Hu3,a6),

u’g = u3 +nT63,

=
8%
i

(2.4)

where y,, 8,, 85 are P x 1 matrix functions and u, is a scalar function of the nondimensional
plate coordinates and time. In addition partial differentiation with respect to the non-
dimensional plate coordinates x, is denoted by a comma. It should be noted that the
form (2.4) need not be a solution to all problems in the linear theory of elasticity restricted
to bending problems. However, as shown for the static case the results are identical to
that obtained by Luré [2] so that the above assumption appears to be justifiable.

The three-dimensional strain measures, y%;, 73 and y%; are obtained from the assumed
form of the displacement field (2.4) and are given by

1 T
g = 2(uZp+ug,) = & Kep),

uy 1,
2’?:‘3 = ﬁ ax3+u=3k,a = E(C )T6a+"TK3a9 (25)
1 ou¥ 1
(oo Lol Lo,
%, H ox, H('l) 3

In the above, prime denotes differentiation with respect to x;,
Keg = Ya,p> K3, = 63,0:’ Yo = Sa_Hu3,ao-’ (26)
and

Kap = Kiap) + Kpapy> (2.7)
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where
Kap) = 2(Kop+Kpo), Kiap) = 2(Kyp—Kp,). (2.8)
The stress resultants and matrix stress resultants are defined, similar to [18-20], as

h (! k(!
m =3 | ggax, m =3[ e,

1

1
my = f 153 dx;, m; = f t53m’ dx;, (2.9)
-1 -1
h 1
N,, = ?J‘ %, dx;,
3 1), 32 GX3
and _
my=mgyyv,, My = my,v,, N; =Ny, (2.10)

where v, are the components of the unit outward normal to the boundary surface. The
surface tractions on the planes x; = +1 induce loads and matrix body couples defined by

ps = t3s1 4, I, = t;3C|1—1 = pyL(1), I = 3|l = pan(1), (2.11)

where the boundary conditions as given by equation (2.2) have been used. In addition,
since the density p* is independent of x5, the only other weighted averages that need to be
introduced are

h 1 1 1
p=§J. p*dX3=p*h, kzij 'ldx3,
-1 -1

o o 2.12)
R1=-f & dxs, sxz:—f '’ dxs.
2], 2],

Equations governing the stress resultants and matrix stress resultants for the bending of
the plate are obtained with the aid of equations (2.4), (2.9), (2.11) and (2.12) by integrating,
as well as multiplying by £ or n and integrating, the three-dimensional equations of motion.
This results in the following equations

1 0*uy 08,
7N3a,a+p3 = p( atz +k 6[2 s
1 0%u, %8,
7m3z.a+13_m3 = p("?*‘“z? > (213)
1 o*y
jmﬂa,a+lﬂ—mﬂ =p8K 1—6}7[‘.

In the above the body forces have been omitted and, of course, may easily be added. The
matrix resultant my is related to the shear stress resultant N, as follows:

1

1
o'm, = ch tht dx; = f 13678 dxy
-1 -1

(2.14)
1 1 2
= f th;dx; = f t5pdx; = EN”
-1

-1
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where the derivative of equation (2.3) and some of the definitions in equation (2.9) have

been used.

The constitutive equations relating the stress resultants and matrix stress resultants to
the kinematic quantities defined in equation (2.4) through (2.8) may be obtained from the
integrated form of the free energy (or strain energy). Since the material is assumed to be
homogeneous and isotropic, the free energy of the three-dimensional theory of elasticity

is given by

prA* = "/:‘:v:‘s} r,s =123 (2.15)

L YT
2(1 +v){yrsyrs+l_2v

where E and v are Young’s modulus and Poisson’s ratio respectively. The integrated form
of the free energy is

h 1 EH .
pa=y | prarax = m{"z“”>%‘"‘“”’

1%
—— k!B KM+2K3182K3°,+ 8 2 BaK3,

1——2
—L—67$ Kyt 500 BS, + L1z 37Bd (2.16)
T —aH T 2H2"‘ H21—-2 S '
where B,,a = 1,2...6 are P x P matrices given by
1 1
B, =f e’ dxs, B, = f m’ dx;,
-1 -1
1 1
B, = f ¢n’ dx;, B, = f n¢T dx;, (2.17)
-1 1

Il

1 1
- [ @rax, B[ wmd,

The matrix stress resultants are then determined by using derivatives of the free energy
similar to those given by Green et al. [18]. Thus it may be readily shown that the consti-

tutive equations for the bending of the plate are

= 10,,.pA =10, pA

(2.18)
my = 06ﬁpA, my = 653pA,

where, for example, d;.pA is defined as

d
apA(SB, 83 +71h, Ky, K3yl - = (05,0A4)7D.
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From equations (2.16) and (2.18) the constitutive equations for the bending of elastic
plates are

EH v 1
me,y = T+v {%1"(5@ +m‘spa(%1"se +‘I_}$ 253)} >

1+
m, =0,
EH -
3a m{$2k3a+ﬁm38cx}’ (2.19)
E 1
m; = ———-———-2(1 +V)I{m3K3B+E$56B},

E 1—v
m3 = m{Vﬁ4KaB+Tm683} .

The system of equations (2.6), (2.13), (2.14) and (2.19), with the inertia terms omitted, are
equivalent to (4.5) through (4.6) given in [20] where in [20] the “material coefficients”
‘a’s” are related to the “B’s’ and the set of functions {n,{} are taken as follows :}

hx 2N—-1 _ hX 2N
CN(x3) = (_2_3—) = X%N 19 ”N(x3) = (—'2_3) = X%N’ 1323 s P. (220)

From the definition (2.17) it follows that 8,, 8,, B, and B, are symmetric positive
definite.
From the definitions (2.3), (2.12) and (2.17) the following identities are obtained

B.o=21), o¢Bo=2  Blo=2k 2.21)

as well as
2R, =8B, 28, =B,. (2.22)

3. DECOMPOSITION OF THE BENDING THEORY

The Stokes—Helmholtz decomposition theorem is now applied to each of the members
of 8, as well as p,. These quantities are written as
80! = q’,u+8aﬂ‘l’,ﬂ’ pa = f:a+8uﬁg,ﬁa (31)

where @, { are P x 1 matrix functions, and f, g are scalar functions of the nondimensional
plate coordinates and time. Equation (3.1), expressed in terms of vy, = 8,—Hu, .0, is
written as

Yo = x,a +8aﬁ\|’,[}’ (32)
where

¥ = ¢ — Hu,o. (3.3)

T Note the slight change in notation on the matrix stress resultants and one of the kinematic quantities.
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Substitution of equation (3.2} into equation (2.6), and using equation (2.8) results in
Kap) = X,aﬂ+gav‘|l.vﬂ’ Kiapy = gav‘l’,vﬂ = %SwA\l’, (3.4

where
o? o 82

= ax.ox, o T axd (3:3)

is the two-dimensional Laplacian operator.

Expressions for the constitutive equations in terms of the P x 1 matrix stress functions
@, V¥, 1 and the P x 1 matrix displacement &, are obtained by substituting equations
(3.1);, (3.4) and (2.6), into equations (2.19) and are given by

H
{$1[X ﬂa+£[}v\|’ va]+ —Jv ﬂa[$ AX+ 84 :I}

Mg,y = T+v
m, = 21 g s +i2¥T(q> + &2V 5) (36)
DTS IS et a7 Ant S ol .
E 1
mﬂ = m %363,B+ﬁ%5(q)vﬂ+eﬂa‘l’,a) k)
E

I—

m; = m{V%A‘AX“}‘ % o }

The equations governing %, Y, 8; and u5 are obtained by using the technique outlined
in Green and Naghdi [17] along with the identities given in equations (2.21) and (2.22).
These results are given in terms of the velocity of dilatational waves in an unbounded
medium ¢, = [(A+2u)/p*]* and the velocity of distortional waves in an unbounded
medium ¢, = (u/p*)}, where 4 and u are the Lamé coefficients. Thus, following [17, 20]
the set of equations governing ¥, ¥, 8, and u; are

1 2gf 1\?
mll:]z\l’_ﬁims\"+;(;;) C(l) = 0, (3~7)
2 1 1 2 i 2
(ﬁ) %lmlx—?%mﬁ{[(“) —2]231—%3}6 ( )fca - s, G8)
€2 €2 p\c
1 [c,\? 1 ci\? T
I R [t
+-2-(i)2 (1) = —2k0O,u (3.9)
o\, pan 2Us3, .
iCT(I)A +kT[,0 +l AR -0 (3.10)
H % 203 o\ Pz = 2U3, .

where the two wave operators [J; and [J, are defined as

1\26? 1\?o*
= A_(C_x) 5}5, U, = A_(—) ﬁ (3.11)
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It is noted that equation (3.7) is uncoupled from the other three equations but rep-
resents P coupled partial differential equations. Since B, and 8B, are square, real and
positive definite, equation (3.7) may be reduced to a set of P uncoupled equations. In
addition, for the static case, the remaining three equations, viz. (3.8), (3.9) and (3.10), may
also be uncoupled, and this is done in Section 5.

4. THE CANONICAL FORM OF THE EQUATIONS OF THE BENDING
OF ELASTIC PLATES

Up to now the set of functions {1,n,{} have been assumed to be arbitrary except for
the condition that they form a basis of the space &(P). In what follows these functions are
determined in such a way that the set of governing equations (3.7) through (3.10) remain
invariant under a linear change of bases of the space &(P). This requirement is of im-
portance since the field equations will be the same irrespective of whether power functions
or Legendre polynomials are used in the assumed form of the three-dimensional dis-
placement field.

Since B, and B, are square, real and positive definite, as well as B, and B, the
standard reduction of simultaneous quadratic forms may be used (see, e.g. Mirsky [21,
Theorem 13.4.2]). The following notation is now introduced in the reduction of the pairs
of simultaneous quadratic forms

“Bfﬁlml =3, %Tmsml =D, = diag(4,, 4,,.. .,4p),

' (4.1)
%;2}2%2 =3, %§$6$2 =D, = diag(u,, u, - - - ph
where 1., 4,,...4pand u,, u,,... up are the roots of the equations
det(B;—AB,) =0, det(B,—uB,)=0, 42

respectively. In addition 3 is the P x P identity matrix, and the P x P matrices ¥, and

B, are

Bo=|u uy...up, Br=|v, v,...05), (4.3)

where u,,u,,...up and v,,v, ... v, are the normalized eigenvectors determined by

o ___ &
(85 _—‘lrgl)uz = O, u, ('_iz‘m 1‘7,)%,
i (4.4)
(2}6 '-ﬂtBZ)vr - 0, vr (ﬁz‘mzt—)r)g -

The above reduction of simultaneous quadratic forms introduces a change of bases which
is denoted by

Z=9t, H=%n (4.5)
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Thus, with the introduction of the following quantities

v = B¥, L= BX o =%, ¢ =%,L 46)
8=P,A;, K=k € =%[BP, € =%PB,P, '
as well as
PAT c,\? T
€= € -€ =j|—] -2|€-¢,, “4.7)
I—2v C,
equations (3.7)~(3.10) may be written in the following canonical form
3O —1—53 ‘P+2—I—ZZ(I)—0 4.8)
2 Hz 1 ple, g — Yy -
c\? 1 1 . 2{ 1\? 2
- e — —— = —Z(1 .
[3(c2) O, HZQI}X+HLA3+p o fZ(1) HZ( s, 4.9)
1 {c,\? L er 2{ 14?2
3[32“‘? C_z D, A3‘E AX+; o p3H(1) = —2K[,u;, (4.10)
iZT(I)AX+K7E] A +J- L ’ = -] 4.11
H 23PC2 Ps = 2U3, A1)
and @ is determined by
® = X + Hu,E. (4.12)

Equation {4.8) is a set of P uncoupled partial differential equations, and they are related
to the propagation of shear waves since it involves only the distortional waves in an un-
bounded medium ¢, = (u/p*)*. Equations (4.9)and (4.10) are 2P coupled partial differential
equations which are coupled to the scalar partial differential equation (4.11). The in-
dependent variables in these equations are the nondimensional plate coordinates and time,
since the thickness coordinate has been eliminated through the introduction of the set
of functions Y.

The set {1, H, Z} will be called the canonical bases and is related to the original set
{1,m, L} by equation (4.5). It is useful to reformulate the results in terms of the canonicat
bases. From equations (2.17), (4.1), (4.6),, (4.6)g and (4.5) it follows that

1 1 1
3 :J ZZ7 dx,, 3 :f HH7 dx,, €, =f ZH" dx,,
! ! o (4.13)

1 1 1
€, = f HZ'dx;, D, = f Z(Z) dx;, D, = f H/(H)" dx;.
-1 -1 -1
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The canonical matrix stress resultants, which are obtained from equations (2.9), (3.6),
(4.1), (4.5) and (4.6), are denoted by

EH v 1

M,Sa = %fmﬁa = m{xﬁm-kam‘l’.va + 1 —2v5ﬁal:AX+E@§A3:]},

EH 1
M3a = ‘Bgmh = m{A:;,a"'ﬁ‘sr(m,a‘}'gaﬁ‘v,ﬂ)}’

. 1 {4.14)
M, =Bim, = m{‘f*%+§‘bl“"’ﬂ“ﬂ““"“’} ’

E 1—v
—qT S 3] ( —_— .

M, =PBim, STy {VLZAX+ I QzAB}

The three-dimensional displacement field is determined, with the aid of equations (2.4),
(3.2),(4.5)and (4.6), as

u¥ = Z1(X ,+¢,'¥ p),

-4

4.15)
u?; = u3 + HTA3 .
Finally, the boundary conditions for the edge of the plate are
either M, ;v, specified or I', specified
either M, v, specified or A; specified (4.16)

either N,,v, specified or u, specified
where
ra: = ‘B; 17:1'

The nomenclature is such that the canonical form is obtained by replacing minuscles by
majuscules except for the “material coefficients” (2.17) which are replaced by the con-
ditions (4.13).

The following useful identities are readily shown from equations (2.21), (4.1}, (4.5)
and (4.6):

DX =2Z(1), LID.X =2, €T = 2K 4.17)
as well as
€, +€7 = 2Z(HH(1), ETZ() =1, K=€D'Z(1). 4.18}

The canonical bases are now selected since the set of governing equations (4.8)4.11)
remain invariant under a linear transformation of the bases Y’ = {1, 4, {}. In order to show
this consider another set of functions Y* = {1,n*,{*} which are related to Y by the
linear transformation

=98 a=9nm (4.19)

or written out

P P
C;(X3)= Z Q, wmlml(x;), Ny (x3) = Z Qo vamtiae(X3),
M=1 M=1
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where Q, and Q, are P x P nonsingular matrices. The conditions on the reduction of the
simultaneous quadratic forms require that

7zt =17, H* =H, (4.20)
so that equations (4.13) remain invariant under the change of bases (4.19) [ie, D = D,,

€ =€, a=1,2and thus from equation (4.7) €* = €]. In addition the new set of eigen-
vectors are related to the old set (4.3) and (4.4) by

B =@ "B, B =(Q)'B, (4.21)

Since u¥, u¥ and x; are unchanged under the change of bases (4.19), it follows from
equations (2.3), (2.4) and (3:2) that

V=@ N, xt =@D7'r 8= (@178, (4.22)
and from equations (2.12), and (4.19), requires that
k™ =Q,k. (4.23)
Substitution of equations (4.21)—(4.23) into the appropriate expressions in (4.6) yields
¥r=v, Xt =X, Tt =%, AT = Ay, K* =K. {(4.24)

Hence, the canonical equations (4.8)-(4.11) are invariant under a change of bases (4.19).
The canonical matrix stress resultants (4.14) are also invariant under (4.19) due to (2.9)
and (4.20). It should be mentioned that equations (4.8)-(4.11) are not invariant under the
transformation

N’ =n+b, (4.25)

or written out
N (x3) = ny(x3)+ by, N=12...P

where by are a set of constants. It may be shown, however, that equations (3.7)3.10) are
invariant under the transformation (4.25). The selection of b changes the functions H, as
well as the physical meaning of u;. The functions { are odd and continuous and thus
£(0) = 0. No similar requirement is imposed on the functions 5 so that the functions n
are now selected so that n(1) = 0. Thus from (2.4) u, represents the transverse displace-
ment on the upper or lower surfaces.

For a given value of P (P > 2) (since P = 1 is a degenerate case) the set {H, Z} may
readily be calculated by numerical means on a computer. In what follows only selected
results are recorded. For the case when P = 2 the eigenvalues are

A, = 24688, i, = 42.5312

(4.26)
py = 24674,  u, = 255389,
and
) (1-5397x3—0~5386x§)
¥ 12:6465x, —4-6460x3
(4.27)

09991 — 1-2198x2 +0-2207x§)

H =
(x3) (0'8016 —6-6672x2 +5-8656x%
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The graphs of these functions are shown in Figs. 1 and 2. For all practical purposes the
first transverse mode shapes are approximately sin(n/2)x, and cos(n/2)x, as well as
Ay = p, = (mn/2)* = 2.4674. The second transverse mode shapes differ from the exact
transverse mode shapes, but improvement is obtained as P increases. This result is shown
in Figs. 3 and 4. These figures are only for the odd functions Z (x;) N = 1,2,... P for
values of P equal to 3 and 4. Similar results also apply to the even functions H \{x,),
N = 1,... P, where it is understood that the shape of these functions depends upon the

20 ~

o5 | Z2

0.5 1.0

-1.5 }+

2o L

F1G. 1. Odd canonical thickness expansion functions for P = 2.

05

-5 =

FiG. 2. Even canonical thickness expansion functions for P = 2.



1066 R. C. KOELLER

3.0 r

25 r

2.0 r

05 +

3

-5 b+

F1G. 3. Odd canonical thickness expansion functions for P = 3.

physical interpretation of u; which has been selected to represent the transverse displace-
ment of the upper or lower surfaces. It is not surprising that the canonical functions shown
in Figs. 1, 3 and 4 approximate the thickness mode shapes since they are obtained by
solving eigenvalue problems given by equations (4.1}-(4.4). The matrices B,,a = 1,2...6
are all the possible products of the set of functions §{ = {{;,{,,...{,} and n = {n,n,,
... np} integrated over the thickness of the plate. Thus we are finding approximate eigen-
functions in the thickness direction when P is a finite integer. The method of finding the
canonical set Z = {Z,,Z,,...Z,} and H = (H,, H,, ... H,} is to select a set of functions
which forms a basis of the space &), for example if P = 2 one may select {,(x3) = x,,
{lxs) = x3, 7,(x3) = 1 —x3, n,(x3) = 1 —x3. With these functions for {, q calculate B,,
a=1,2...6, given by equation (2.17) and then simultaneously diagonize B, and Bs as
well as B, and B,. The selection of {,, {,, n, and 5, given above does not affect the results
due to equations (4.19)-4.24). For a fixed value of P the system of equations (4.8)(4.11)
is closed and the error introduced depends only on the integer P. Thus equations (4.8}
(4.11) for a given value of P is an approximate theory of the bending of elastic plates, the
error only depends upon the order of the approximation and the error should decrease as
P increases. The approximate constitutive equations are given by equation (4.14), where
D, and €, a = 1,2, are determined from equation (4.13). For example with P = 2, D,
and D, are diagonal 2 x 2 matrices with 4,, 1, and u,, u,, as given in equation (4.26), as
the diagonal elements respectively. Also €, and €, are obtained from equations (4.13);,
(4.13), and (4.47) by integration.
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1.5

05 |- 2,
05 1.0
; ;

-05

-2.0

-25

-30 r

a0 L

FiG. 4. Odd canonical thickness expansion functions for P = 4.

1067

When P tends to infinity a set of functions Y which makes the set of equations (3.7}

(3.10) into the canonical form (4.8)-(4.11) are

2N -1 2N -1
( )nx3, HN(x3)=cos( > )

Z\(x3) = sin nX3.
It follows from equations (4.13) and (4.28) that
N 2
D,=9,= (g) 929 € =-¢,= gb,

where
Dyy = CN—=1)0yp NM=12....
Also from equations (4.7), (4.17),, (4.18); and (4.29) follows

2
€= [1—(3) ]%, T = %9422(1), K= %:D"Z(l).

2

&)

(4.28)

(4.29)

(4.30)

(4.31)
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Substitution of the values given in equations (4.29) and (4.31) into the basic equations
(4.8)—(4.11) which govern ¥, X, A, and u; results in

2 2
[smz—(%) mz]wz—g(i) Z(1) = 0 432)

pC

n \?[c,)? n c,\? 2{1)2 ~ 2]e,
I:S Dl—(ﬁ) (C—1) mz]x_iﬁl:l_(c_l) ]®A3+;(6—) fZ(1) = H(Cl) Z(1)u;, (4.33)
7\ e\ s n .
30~ (2] 2% a3 1- |2 |max = “inoz00m,, (439

2H H{1)\?
ZT(I){AX+7®_1D2A3} +;(C_) py = —HO,u,, (4.35)
2

and the stress resultants from equation (4.14) are determined by

EH
M. 1+v{x-”“+8"”\" T 25”“(A ~ou® 3)}
EH i
L JNRTLE N7 S
. 2(1+v){ 2t (Pt "')}’ (4.36)
Exn T .
LI S JNLE, 7 S
My 4(1+v)l®{ SRS TR )}
Ea®
_ B ) AX 41— A
M, 2(1+v)(1—2v){ vAX +( v)( )'D 3}’
where
8H _ -
® = X+ D 2Z(1)us. (4.37)
T

5. STATIC CASE WITH TRANSVERSE LOADS

Attention is now restricted to the equilibrium of an elastic plate subjected only to
normal surface tractions. These restrictions will simplify the further reduction of the
equations governing X, A, and u; and will allow a comparison with the results given by
Luré. With the above restrictions equations (4.32)+4.35) reduce to

2
2 —
sa () o] -0 s

i n 2v]2
{3A [2(1—v (2H) } 2(1_v)2H:DA3 [2(_1_—)] Z(uy, (52)

20—=v ][ = 1 T _ -1
oo [T |[fa] faeitaymax - forzome 6

2H
ZT(I){AX +?®‘1AA3} +’i%i)p3 — —HAu,. (5.4)
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In order to obtain an equation governing u, first solve for A; from equation (5.2) so
that

A, =21 —v)(%

-t 1—2v )\, 4 -
D 1{3A—|:2(1——v):|(ﬁ) 'D}X—E(I—ZV)Q Z(tu,. (5.5)

Next substitute equation (5.5) into (5.3) as well as (5.4), and use the fact that

B ] 1 (_1)n+122n—1(22n_1) n 2n
ZT 1 2n — = - B .
( )m Z(l) NZ_.:I (2N _ 1)2n (2n)' 2 2n> (5 6)
where B,, are the Bernoulli numbers [e.g., 22} defined by
[ o] B n
Y oy <o (5.7)

e*—1 = n!

7 )2 2 1 2v 1—vlif =z \?
[SA—(Q—H) 92] - ‘Eu_v)[3“( : )(ﬁ) :02]2(1)»43, (53)

-2 2 _
sz{(l) 'D‘2|:3A+ ! (%) sz]AX}+i 1+v)p3=1—_vaAu3. (5.9)

to obtain

2H 1—v 2E\1—v
From equation (5.8) solve for X which results in

7
2H

2{& n—v
X = —ﬁ{z 1—v

n=1

—2n
'D) A" 1} Z(1)u,, (5.10)

and upon substitution of equation (5.10) into (5.9) finally gives the partial differential
equation governing uy as

32 (=1)m

W,,; 2+ ]!

4
22n+3(22(n+1)_ l)Bz(”+1)H2(n+l)An+lu3 — L_Dl_)j, (511)

where

EW 2, EH?
=2 (5.12)

D=ma—m =3 1o

Equation (5.11) written out is

14

A1 +2H2A+3THAA? + 288 HOA® +. . Juy = %. (5.13)
Thus the bending of an elastic layer bounded by two parallel planes with normal loads
1p, on the upper surface and 1p, on the lower surface has been reduced to the solution of
equations (5.13) and (5.1) which when written out is

2
A\{,N_[E%QN_I)} ¥y =0, N=12.... (5.14)
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Introduction of the concept of functions of operators defined in their usual way
[e.g. 23] allows the following information for u;. Now since

tan x it n

sec? x — e Zl (— 1)"[2(nT)]!22"+3(22‘"+”— DB+ X", (5.15)
equation (5.11) may be written as
3 2 -1 2 l4p3
ﬁ;{sec H/A—(H\/A)™" tan H/A}(H\/A)*u; = R (5.16)
or equivalently
3 R sin 2H,/A ) I*ps

Expressions (5.16) and (5.17) are equivalent to (5.11) where, for example, the notation
sin 2H,/A/2H,/A means

sin2HJA _ . (2HPA +(2H)2A2
2HJA 31 st

(5.18)

In order to express the above results in a formulation similar to Luré the scalar stress
function i, defined by

V=5 v sec?(H./Aus, (5.19)

is introduced. Then from (5.17) ¥ must satisfy

sin 2H,/A
(meva
2HJA

__ Ps
)Alﬂ =3IHG (5.20)

where G is the shear modulus. Equations (5.20) is equivalent to equation (3.3.30) of A. L.
Luré [2], and (5.14) is given in the summary of the results of Luré in [3-5]. It should be
mentioned that the method of solution is not the same as that given by Luré even though
it is possible to obtain all of his results from the above analysis.

In summary the method of solution consists first in solving the partial differential
equations (5.13) and (5.14). Then X, A; and ® may be determined with the aid of equations
(5.10), (5.5) and (4.37), which are expressed in terms of ¥ and u; as follows:

0 _ —2n
X = _%{ Y '1’_:(%9) A"_lu3}Z(l), (5.21)
n=1
2 fee) n B -2n—-1
n=1

_o( = n T —2n-2 .
® = —{n; (1 + _v) (ﬁm) A us} Z() (5.23)
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The matrix stress resultants are then determined from equations (4.36) and (5.21}(5.23) as

2E n H
My, —T_—V{Z [(n—v)(A" " uy) gy + v 5,A"u3] —9) Z(1) = (1 —vjep, ¥, }

n=1

_2E -2n-1 H(l—
My =15 {Z n(A"3). ( ; ) Z(l)_—(fl) “ﬁzH:DW }

(5.24)
—2Ef{& .. n o\ Hl-v) (=} n, \!
= 25 o] - < e]

-2E -2n-1
My = — {Z (A" Ly )(%m) Z(l)}.

Also the shear stress resultant from equations (2.1),, (2.14), (4.6),, (4.14); and (4.31), may
be expressed as follows

-2

IM,. (5.25)

h . h 2 T
- _ 9T _ T T R
20 m,,_zz M”—HZ (1)(2H®

Substitution of equations (5.24) and (5.6) into (5.25) yields

B 2V 2E 1 & (=1 iy aonea EZHZ n
Nas = _(ﬁ)l_v {nzl CITNTIL ”(2) Pane )

B (5.26)
3 H(l4 v)s,;aZT(l)‘l"z}.

Ny =

Expressions for the three-dimensional displacement field may also be determined in terms
of ¥ and u; by a similar method, but they will not be recorded.

6. AN EXAMPLE

As an illustration in the use of this theory, the torsion of a flat plate of length 2/ parallel
to the coordinate direction X,, width 2b parallel to the coordinate direction X, and
uniform thickness will now be considered. The origin of the coordinate system is selected
at the center of the plate and the nondimensional coordinates are defined by

. X, X, 2X,
_ X = —, X - —,
1 2 l 3 h
For P a finite integer a solution of the canonical equations (4.8)4.11) is sought subject
to the following boundary conditions for the stress resultant and canonical matrix stress
resultants

6.1)

N3 =0, My, =0, My, =0 forx, =+

~| <

(6.2)

The above follows from the boundary conditions for twist about the x, axis, namely

b
th =0, t5, =0 forx, = +7 (6.3)
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Consideration 1s restricted, for simplicity, to the static case and since there is no de-
pendence upon x, for the function ¥ equation (4.8) reduces to

REL h
o DY =0 H=_ (6.4)

The solution of (6.4) is given by

‘l’:

X x
sinh El\/bl)A+(cosh ﬁl\/bl)B, (6.5)

where 4 and B are Px 1 constants of integration matrices, sinh(x,/H),/®; and
cosh(x,/H),/®, are defined in terms of exp[(x,/H)\/D,] in the usual manner, and
D, = diag(\/4,, /4, ... /4p). Also the solution of equations (4.9)-(4.11) for the prob-
lem under consideration is

uy = al’x,x,

Ay =0 (6.6)

X = —2alHx,x,®; 'Z(1),

where « 1s the angle of twist per unit length. In addition, from equations (4.12), (4.17) and
(6.6) it follows that

® =0 (6.7)

The canonical stress matrix resultants are determined from (4.14) and (6.5)6.7). The
only nonvanishing stress matrix resultants are M,,, M, and M,. In particular M, is
given by

EH _ 1 X 1 X
M, = _m{zazzmal lz(1)+5ﬁ5:b1 (smh ﬁ‘\/m 1)A +577D1 (cosh El\/:b l)B}. (6.8)
The shear stress resultant is determined from equation (2.14), which is expressed in terms
of the canonical representation as

Ny, = IHE™M,. (6.9)

Since M, = 01t follows that N5, = 0 so that the boundary condition (6.2), is satisfied.
Also, M,, = 0 and M;, = 0 so that the only nontrivial boundary condition is (6.2), with
f = 2. From equation (6.8) and the nontrivial boundary condition of (6.2) the following
constants of integration are obtained

b 3
A=0, B= —4a12H3(coshm\/’bl) D2I(1), (6.10)

and hence

b -1
| - —4ocle3(cosh %\/ZDI)(cosh m\/ﬁ,) D 2Z(1). (6.11)
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Of interest is the approximate three-dimensional displacement field given by equation
(4.15) and it is determined, with the aid of equations (6.6) and (6.11), as

uf = —alPHx,x; = —aX,X; (6.12)

. b _1 3
ut = al’H {—x1x3+4HZT(x3)(smh%\/®1)(coshm\/bl) Q,—TZ(I)} (6.13)
u¥ = al’x,x, = aX,X,, (6.14)
where the following identity has been used
ZTD7Z(1) = 1Z7E = Lx,. (6.15)

Thus for all values of P > 2 u* and u% are the same as that predicted by the theory of
elasticity. Equation (6.13) written out is

P ZN(I)ZN(xs)sinh(xl/H)\/iN}’

* IZH _ 4H .
u; o { XX, + NTi ,{; COSh(b/lH)\//lN

(6.16)

where Z,(x;) and 1, are determined in Section 4. For the case when P tends to infinity,
this equation becomes

R G ) sinh(wyx,/H)
* — gl2H 4H ¥ ——— _— 17
u¥ =al { X X3+ P smwa3cosh(wa/lH) , (6.17)

where wy = (2N —1)n/2 and is the same as that predicted by the theory of elasticity.
Consider now the case when P = 2. The second term in equation (6.16) is given by

_3 L. X b/
4H2; 2ZI(x3)Zl(1)s1nhﬁl\/ll/cosh IJHI,

(6.18)

and
Z,(x3) = 1-5397x, —0-5386x3 = sin %x3

JA = 15712 = 325 = 1.5708

Z,(1) = 1.0011.

Thus the second term in equation (6.16) for P = 2 is close to the second term in the exact
solution. Also the third term is much smaller than the second term in this expression.
Now as P increases the second term gets even more close to the second term of the exact
solution (see Figs. 1, 3 and 4) and as P tends to infinity, they become equal. Similar remarks
also apply for the third term, etc.

The above illustrative problem clearly shows the type of approximation being used
as well as the role of the sequence of higher order approximations. Further, the role of
the canonical functions and their increasing approximation to the eigenfunctions is also
brought out in this example.

It is anticipated that in vibration problems the same type of results would also be
true. For example, if one selects P = 2 and the plate is vibrating in the first thickness
mode, the functions Z, and H, as well as 4, and y,, are very good approximations to
the correct eigenfunctions and eigenvalues. Further, any shape up to order four in x;
may be expressed in terms of the set {1, H, Z}. If one is interested in higher modes then P



1074 R. C. KOELLER

should be taken at least one larger than that mode number. In addition, the thickness
function expansion should be in terms of the eigenfunction when doing the three-
dimensional problem and thus for an approximate theory it would be physically correct
to use approximate eigenfunctions for the thickness expansion. Also the error between
the equations of the theory of elasticity and equations (4.8)-(4.11) depends only on the
integer P and as P tends to infinity they become equivalent to the equations of linear
isotropic elasticity in terms of three-dimensional displacement potentials.

Finally, in the case of symmetric layered composite plates the exact mode shapes are
not always known. The above method, with modifications in order to account for the
layering, could give a method to obtain approximate mode shapes. The main change in
the theory will take place in the form of the “material matrix coefficients”, but the method
of obtaining the canonical functions will be the same.
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AGcTpakT—BBIBOOMTCA TEOPHs M3rMOa JIMHEWHBIX, YOPYIUX IUIACTUHOK, B BUAE NMPOM3BOJIBHOM CHCTEMBI
JIMHEHHO HE3aBUCUMBIX pyHKUMit, oOpa3yloielt 6a3y s mapamerpa TomMOuHbI. [Tony4aeTcd KaHOHHYECKAS
CHCTEMA YPAaBHEHHMH B BUAE GYHKUHMI MAaTPHLBI HATIPSOKEHUM, M3 KOTOPOH MOXHO OIPENETIUTh BCE KHHEMAT-
HHECKUE ITIEPEMEHHBIC, BO3HUKAFOILHME B PE3Y/IbTATE HANIPSKEHHS M MATPHULBI HAPSDKCHHH . DTa KaHOHMYECKa st
CHCTEMa YPaBHEHMH MOJb3YeTCs NPHOIMXEHHBIMA KOHOUIypalusMu TONEPeYHBIX COOCTBEHHBIX BHIOB
KoJieOaHui, KOTOPBbIE MONy4YaloTCs MyTEM PELUEHUs 3alayM Ha COOCTBEHHBIE 3HAYEHHS A CyMMAapHBIX
yHKIHI pa3IOKEHUs.



